Minggu, 11 September 2016

RESUME III KIMIA ORGANIK 1

ORBITAL DAN PERANANNYA DALAM IKATAN KOVALEN

A.    ORBITAL HIBRID DARI NITROGEN DAN OKSIGEN
 Hibrid sp
Salah satu contoh orbital sp terjadi pada Berilium diklorida. Berilium mempunyai 4 orbital dan 2 elektron pada kulit terluar. Pada hibridisasi Berilium dijelaskan bahwa orbital 2s dan satu orbital 2p pada Be terhibridisasi menjadi 2 orbital hibrida sp dan orbital 2p yang tidak tribridisasi. Diagram hibridisasinya sebagai berikut :
Hibridisasi sp membentuk geometri linear dengan sudut 180°. Terjadi pada BeH2 dan BeCl2
Hibrid sp2
Salah satu contoh orbital hirbid sp2 diasumsikan terjadi pada Boron trifluorida. Boron mempunyai 4 orbital tapi hanya 3 eletron pada kulit terluar. Hibridisasi boron mengkombinasikan 2s dan 2 orbital 2p menjadi 3 orbital hybrid sp2 dan 1 orbital yang tidak mengalami hibridisasi. Skema hibridisasi Boron adalah sebagai berikut :
Orbital hybrid sp2 menjadi bentuk trigonal planar dengan sudut ikatan120°.
Hibrid sp3
Hibridisasi menjelaskan atom-atom yang berikatan dari sudut pandang sebuah atom. Untuk sebuah karbon yang berkoordinasi secara tetrahedal (seperti metana, CH4), maka karbon haruslah memiliki orbital-orbital yang memiliki simetri yang tepat dengan 4 atom hidrogen. Konfigurasi keadaan dasar karbon adalah 1s2 2s2 2px1 2py1 atau lebih mudah dilihat:
(Perhatikan bahwa orbital 1s memiliki energi lebih rendah dari orbital 2s, dan orbital 2s berenergi sedikit lebih rendah dari orbital-orbital 2p)
Teori ikatan valensi memprediksikan, berdasarkan pada keberadaan dua orbital p yang terisi setengah, bahwa C akan membentuk dua ikatan kovalen, yaitu CH2. Namun, metilena adalah molekul yang sangat reaktif, sehingga teori ikatan valensi saja tidak cukup untuk menjelaskan keberadaan CH4.
Lebih lanjut lagi, orbital-orbital keadaan dasar tidak bisa digunakan untuk berikatan dalam CH4. Walaupun eksitasi elektron 2s ke orbital 2p secara teori mengijinkan empat ikatan dan sesuai dengan teori ikatan valensi, hal ini berarti akan ada beberapa ikatan CH4 yang memiliki energi ikat yang berbeda oleh karena perbedaan arah tumpang tindih orbital. Gagasan ini telah dibuktikan salah secara eksperimen, setiap hidrogen pada CH4 dapat dilepaskan dari karbon dengan energi yang sama.
Untuk menjelaskan keberadaan molekul CH4 ini, maka teori hibridisasi digunakan. Langkah awal hibridisasi adalah eksitasi dari satu (atau lebih) elektron:
Proton yang membentuk inti atom hidrogen akan menarik salah satu elektron valensi karbon. Hal ini menyebabkan eksitasi, memindahkan elektron 2s ke orbital 2p. Hal ini meningkatkan pengaruh inti atom terhadap elektron-elektron valensi dengan meningkatkan potensial inti efektif.
Kombinasi gaya-gaya ini membentuk fungsi-fungsi matematika yang baru yang dikenal sebagai orbital hibrid. Dalam kasus atom karbon yang berikatan dengan empat hidrogen, orbital 2s dengan tiga orbital 2p membentuk hibrid sp3 menjadi
Pada CH4, empat orbital hibrid sp3 bertumpang tindih dengan orbital 1s hidrogen, menghasilkan empat ikatan sigma. Empat ikatan ini memiliki panjang dan kuat ikat yang sama, sehingga sesuai dengan pengamatan.
Menurut teori hibridisasi orbital, elektron-elektron valensi metana seharusnya memiliki tingkat energi yang sama, namun spektrum fotoelekronnya menunjukkan bahwa terdapat dua pita, satu pada 12,7 eV (satu pasangan elektron) dan satu pada 23 eV (tiga pasangan elektron). Ketidakkonsistenan ini dapat dijelaskan apabila kita menganggap adanya penggabungan orbital tambahan yang terjadi ketika orbital-orbital sp3 bergabung dengan 4 orbital hidrogen.
1.      HIBRIDA DARI NITROGEN
Ikatan kovalen tidak hanya terbentuk dalam senyawa karbon,tetapi juga dapat dibentuk oleh atom-atrom lain. Semua ikatan kovalen yang dibentuk oleh unsur-unsur dalam tabel periodik dapat dijelaskan dengan orbital hibrida. Secara prinsip, pembentukan hibrida sama dengan pada atom karbon.

Amonia, NH3, salah satu contoh molekul yang mengandung ikatan kovalen yang melibatkan atom nitrogen. Atom nitrogen memiliki konfigurasi ground-state: 1s2 2s2 2px1 2py1 2pz1, dan memungkinkan atom nitrogen berikatan dengan tiga atom hidrogen.

Ketika terdapat tiga elektron tak berpasangan mengisi orbital 2p, ini memungkinkan orbital 1s dari hidrogen untuk overlap dengan orbital 2p tersebut membentuk ikatan sigma. Sudut ikatan yang terbentuk adalah 107.30, mendekati sudut tetrahedral (109.50). Nitrogen memiliki lima elektron pada kulit terluarnya. Pada hibridisasi sp3, satu orbital sp3 diisi oleh dua elektron dan tiga orbital sp3 diisi masingmasing satu elektron.

Ikatan sigma terbentuk dari overlap orbital hibrida sp3 yang tidak berpasangan tersebut dengan orbital 1s dari hidrogen menghasilkan molekul ammonia. Dengan demikian, ammonia memiliki bentuk geometri tetrahedral yang mirip dengan metana.
Nitrogen memiliki tiga elektron tak berpasangan pada orbital hibrid sp3, ketika satu elektron dalam orbital hibrida tersebut tereksitasi ke orbital p maka terbentuk hibrida baru, yaitu sp2. Elektron pada orbital p digunakan untuk membentuk ikatan pi. Jadi, atom nitrogen yang terhibridisasi sp2 memiliki satu ikatan pi yang digunakan untuk membentuk ikatan rangkap dua, mirip dengan molekul etena. Apabila elektron yang tereksitasi ke orbital p ada dua maka nitrogen memiliki kemampuan membentuk dua ikatan pi atau satu ikatan rangkap tiga (hibridisasi sp).


2.   HIBRIDA DARI OKSIGEN

Oksigen adalah unsur ketiga terbanyak yang ditemukan berlimpah di matahari, dan memainkan peranan dalam siklus karbon-nitrogen, yahkni proses yang diduga menjadi sumber energi di matahari dan bintang-bintang. Oksigen dalam kondisi tereksitasi memberikan warna merah terang dan kuning-hijau pada Aurora Borealis.
Oksigen merupakan unsur gas, menyusun 21% volume atmosfer dan diperoleh dengan pencairan dan penyulingan bertingkat. Atmosfer Mars mengandung oksigen sekitar 0.15%. dalam bentuk unsur dan senyawa, oksigen mencapai kandungan 49.2% berat pada lapisan kerak bumi. Sekitar dua pertiga tubuh manusia dan sembilan persepuluh air adalah oksigen.

A.    IKATAN RANGKAP TERKONJUGASI
Selain ikatan tunggal dan ganda yang bergantian, sistem konjugasi dapat juga terbentuk oleh keberadaan atom yang memiliki orbital-p secara paralel. Sebagai contohnya, furan adalah cincin beranggota lima dengan dua ikatan ganda yang bergantian dan satu atom oksigen pada posisi 1. Oksigen memiliki satu pasangan menyendiri elektron yang terisi pada orbital p, sehingga berkonjugasi dengan orbital p karbon dan membentuk konjugasi cincin beranggota lima. Keberadaan nitrogen pada cincin ataupun gugus α pada cincin seperti gugus karbonil, gugus imina, gugus vinil, dan anion pula dapat menjadi sumber orbital p yang akan membentuk konjugasi.
Sistem konjugasi memiliki sifat-sifat khas yang menyebabkan molekul tersebut memiliki warna. Banyak pigmen memiliki sistem elektron berkonjugasi. Contohnya adalah beta karoten yang memiliki rantai hidrokarbon berkonjugasi, mengakibatkan warna molekul ini berwarna oranye cerah. Ketika satu elektron dalam sistem tersebut menyerap foton pada panjang gelombang yang tepat, ia dapat dipromosikan ke aras energi yang lebih tinggi. Kebanyakan transisi elektron ini terjadi pada elektron orbital p ke orbital anti-ikat p (π ke π*), tetapi elektron non-ikat juga dapat dipromosikan (n ke π*). Sistem konjugasi dengan ikatan ganda berkonjugasi yang kurang dari delapan hanya dapat menyerap gelombang di sekitar daaerah ultraviolt, sehingga ia akan tampak tak berwarna. Dengan penambahan ikatan ganda, sistem tersebut akan menyerap foton dari gelombang yang lebih panjang, sehingga warna senyawa akan tampak kuning sampai dengan merah. Senyawa yang berwarna biru ataupun hijau umumnya tidak hanya bergantung pada sistem konjugasi untuk menampilkan warna tersebut.

B.     BENZENA DAN RESONANSI

Struktur Resonansi Benzena:

Resonansi terjadi karena adanya delokalisasi elektron dari ikatan rangkap ke ikatan tunggal. Delokalisasi elektron yang terjadi pada benzena pada struktur resonansi adalah sebagai berikut:

Hal yang harus diperhatikan adalah, bahwa lambang resonasi bukan struktur nyata dari suatu senyawa, tetapi merupakan struktur khayalan. Sedangkan struktur nyatanya merupakan gabungan dari semua struktur resonansinya. Hal ini pun berlaku dalam struktur resonansi benzena, sehingga benzena lebih sering digambarkan sebagai berikut:

Teori resonansi dapat menerangkan mengapa benzena sukar diadisi. Sebab, ikatan rangkap dua karbon-karbon dalam benzena terdelokalisasi dan membentuk semacam cincin yang kokoh terhadap serangan kimia, sehingga tidak mudah diganggu. Oleh karena itulah reaksi yang umum pada benzena adalah reaksi substitusi terhadap atom H tanpa mengganggu cincin karbonnya
Teori resonansi dapat menerangkan mengapa benzena sukar diadisi. Sebab, ikatan rangkap dua karbon-karbon dalam benzena terdelokalisasi dan membentuk semacam cincin yang kokoh terhadap serangan kimia, sehingga tidak mudah diganggu. Oleh karena itulah reaksi yang umum pada benzena adalah reaksi substitusi terhadap atom H tanpa mengganggu cincin karbonnya.

6 komentar:

  1. izin berkomentar lukita, menurut saya pada postingan ini pada penjelasan hibridisasi akan lebih jelas jika di buat konfigurasi pada pengisian orbital di tiap hibridisasi misalnya hibridisasi SP, akan lebih terlihat perbedaannya dg SP2 jika dibuat pengisian elektron pada tiap-tiap orbitalnya. terima kasih

    BalasHapus
    Balasan
    1. terimakasih sebelumnya kepada elsa maria cristi, yang telah memberikan komentar, dan saya akan mencoba untuk menambahkan di postingan saya di atas.

      Hapus
  2. izin bertanya, tolong jelaskan kenapa lambang resonasi bukan struktur nyata dari suatu senyawa tetapi merupakan struktur khayalan?

    BalasHapus
    Balasan
    1. terimakasih sebelumnya kepada windi pujiwati, saya akan mencoba menjawab:
      Resonansi terjadi karena adanya delokalisasi elektron dari ikatan rangkap ke ikatan tunggal. Delokalisasi elektron yang terjadi pada benzena pada struktur resonansi.lambang resonasi bukan struktur nyata dari suatu senyawa, tetapi merupakan struktur khayalan. Sedangkan struktur nyatanya merupakan gabungan dari semua struktur resonansinya. Hal ini pun berlaku dalam struktur resonansi benzena.Teori resonansi dapat menerangkan mengapa benzena sukar diadisi. Sebab, ikatan rangkap dua karbon-karbon dalam benzena terdelokalisasi dan membentuk semacam cincin yang kokoh terhadap serangan kimia, sehingga tidak mudah diganggu. Oleh karena itulah reaksi yang umum pada benzena adalah reaksi substitusi terhadap atom H tanpa mengganggu cincin karbonnya.

      Hapus
  3. kenapa suatu sistem kojugasi mampu membuat molekul berwarna?

    BalasHapus
    Balasan
    1. terimakasih kepada soni afriansyah, saya akan mencoba menjawab:
      Sistem konjugasi memiliki sifat-sifat khas yang menyebabkan molekul tersebut memiliki warna. Banyak pigmen memiliki sistem elektron berkonjugasi. Contohnya adalah beta karoten yang memiliki rantai hidrokarbon berkonjugasi, mengakibatkan warna molekul ini berwarna oranye cerah. Ketika satu elektron dalam sistem tersebut menyerap foton pada panjang gelombang yang tepat, ia dapat dipromosikan ke aras energi yang lebih tinggi. Kebanyakan transisi elektron ini terjadi pada elektron orbital p ke orbital anti-ikat p (π ke π*), tetapi elektron non-ikat juga dapat dipromosikan (n ke π*). Sistem konjugasi dengan ikatan ganda berkonjugasi yang kurang dari delapan hanya dapat menyerap gelombang di sekitar daaerah ultraviolt, sehingga ia akan tampak tak berwarna. Dengan penambahan ikatan ganda, sistem tersebut akan menyerap foton dari gelombang yang lebih panjang, sehingga warna senyawa akan tampak kuning sampai dengan merah. Senyawa yang berwarna biru ataupun hijau umumnya tidak hanya bergantung pada sistem konjugasi untuk menampilkan warna tersebut.

      Hapus